• Design, Fabrication And Performance Evaluation Of Pedal Operated Groundnut Decorticator

  • CHAPTER TWO -- [Total Page(s) 10]

    Page 5 of 10

    Previous   1 2 3 4 5 6 7 8 9    Next
    • 2.6    Factor Affecting Shelling Operation
      The following parameters affect shelling operation of groundnut process operation as stated by Kauland Egbo (2001)
          Cylinder Speed
      An optimum speed is desirable. Excessive speed can cause the grain to crack and too low a speed can unthreshed heads
      2.6.1    Cylinder-Concave Clearance
      The cylinder and the concave, usually adjustable is important. If it is too small the power requirement will be high and also grain crack could increase.
      2.6.2    Sieve Shake
      This influences the case of grain movement over the sieves.
      Most machines have adjustments for each of the above factors and the operating manual should contain helpful advice about the correct speed to be used and other factors, provided the machine specifications suit the crops in a particular area.  This is of particular significance in countries. Like Nigeria where some of the thresher are imported from oversea [Kaul and Egbo 1985].
      2.7    Description of some Threshing Equipment
      2.7.1    Maize Sheller
      The maize sheller (fig 2.1.). It consists of a threshing cylinder, concave and centrifugal blower mounted on a frame.  Crop feeding is manual.  The threshing cylinder is of spike tooth type.  Round bars are used as spikes, which are fitted on circular rings.  The head comes out through the opening at the far end of threshing drum.  A blower is used for cleaning the grains.  It is used for shelling of maize cobs and the chaff is removed by winnowing.


  • CHAPTER TWO -- [Total Page(s) 10]

    Page 5 of 10

    Previous   1 2 3 4 5 6 7 8 9    Next
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACTShelling of groundnut pods (Arachis hypegea) by hand is tedious, laborious and unhygienic with low efficiencies. As a result farmer get low income due to amount of broken kernels and a lot of time is lost in the tedious shelling operation. To overcome this problem, pertinent parameters that influence shelling efficiency of pedal operated groundnut decorticator were identified. Pedal operated decorticator were designed and fabricated with chain and sprocket of bicycle and aluminum spike t ... Continue reading---

         

      APPENDIX A - [ Total Page(s): 3 ] ... Continue reading---

         

      APPENDIX B - [ Total Page(s): 6 ]S.E=     ("H"  )/"A"  "×100%"     =   "549" /"1000"  "×100%"         = 55%    At 1500g S.E=     ("H"  )/"A"  "×100%"     = "808" /"1500"  "×100%" = 54%Percentage of breakage     Broken Efficiency (%) B.E=  ("E"  )/"A"  "×100%" Where B.E is broken efficiency (%)  E=     Weight of broken groundnut seed (g) A=    Weight of groundnut seed fed in to hopper (g) Broken Efficiency for Operator (I)     At 500g B.E=       "E " /"A"  ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable No    Table 3.1:     BILL OF ENGINEERING MEASUREMENT AND EVALUATION (BEME)  Table 3.1:     Sample Preparation  Table 4.1     Data Sheet for Physical Properties of Groundnut Pods Table 4.2     Data Sheet for Output Parameters  Table 4.3     Data Sheet for Output  Table 4.4     Average Performance of Thresher ... Continue reading---

         

      LIST OF PLATES - [ Total Page(s): 1 ]LIST OF PLATESPlate No  Plate 2.1:     Groundnut Pod  Plate 3.1:     Sample of Groundnut Seed Plate 3.2:     Determination of Coefficient of Static Friction and Angle of Repose  Plate 3.3:     Pedal Operated Groundnut Decorticator Plate 3.3:     Digital Venier Caliper Plate 3.4:     Digital Weighing Scale  Plate 3.5:     Digital Stop Watch Scale Plate 3.6:     Electric Oven  Plate 3.7:     Tachometer  ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFigure No  Figure 2.1:     Maize Sheller  Figure 2.2:     Hand Maize Sheller  Figure 2.3:      Groundnut Thresher Figure 2.4:     Manual Operated Groundnut Decorticator (Oscillating Type)  Figure  2.5     Power Operated Groundnut Decorticator    ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTSCover Page   Title Page  Certification  Dedication Acknowledgements  Abstract  Table of Contents List of Tables  List of Figures List of Plates CHAPTER ONE: INTRODUCTION 1.1    Background to the Study 1.2    Statement of the Problems 1.3    Objective of the Project 1.4    Justification of the Project 1.5    Scope of the Study  CHAPTER TWO: LITERATURE REVIEW  2.1    Physical Properties of Groundnut  2.1.1    Determination of Size 2.1.2    Determi ... Continue reading---

         

      CHAPTER ONE - [ Total Page(s): 2 ]CHAPTER ONEINTRODUCTION1.1    Background to the StudyGroundnut (Arachis hypogaea) is a species in the legume or beans family (Ashish and Handa, 2014; Atiku et al., 2014).  It was first cultivated in Peru. Its seed contain about 63% carbohydrate, 19% protein and 6.5% oil. Groundnuts are grown in tropical and subtropical climate regions and warmer parts of temperature regions and it is low growing annual plant and has a variety of uses.  Prior to its usage however groundnut need to undergo pr ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 12 ]Therefore, minimum energy required to shell a groundnut kernel        =    2.84Kg/ms.Power      Requirement From,  P   =    (2л NT)/60    (Khurmi et al2005.;)                        (3.6)WhereР    =    Power    N    =    Seed        (rpm)    T    =    Applied torqueAlso,    T    =    F rWhere F    =    Force exerted      r    =    Radius of force exertedP    =    "2 л  NT" /"60" P   ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 2 ]CHAPTER FOUR4.0    RESULTS AND DISCUSSION4.1    ResultsThe raw data for physical properties is as presented in Appendix A while the summary of the results is as presented in table 4.1.The raw data obtained from the experiment is as reported in Appendix B and the means values of the results is as presented in table 4.2. ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE CONCLUSIONS AND RECOMMENDATIONS5.1    Conclusions     The following conclusion can be drawn from the performance carried out on groundnut decorticator. 1.    The lower the knuckle length of the operator the higher the threshing efficiency of the operator. 2.    The lower the weight of the operator the higher the throughput capacity of the machine.3.    The average performance of the thresher at average operating speed of 245.4pm are threshing efficiency 56%, unthreshe ... Continue reading---

         

      REFRENCES - [ Total Page(s): 1 ]REFERENCESAdewunmi, T. (2000) Performance Evaluation of a Locally Developed Maize Sheller with Husking and Winnowing Capacity Proceeding of the NIAE. Pp. 68-73.Afosie, V.N., Akinhanm, T.F. and Ojiodu, C.C. (2009) Proximate Analysis and Physio-Chemical Properties of Groundnut.Ashish S. Raghtafe and Dr. C. C. Handa (2014):  “Design consideration of Groundnut Sheller machine”. Department of Mechanical Engineering, KDK College of Engineering, Nagpu. International Journal of Innovative R ... Continue reading---