-
Comparative Assessment Of The Strengths Of Solid And Glued Laminated Timber
-
-
-
CHAPTER ONE
1.0 INTRODUCTION
1.1 Background of the Study
The versatility of timber finds wide application in the construction industry spanning from simple framing in housing projects to large scale public facilities. However because sawnwood hasrestrictionsto spans and cross-sectional dimensions due to size of tree as well as strength reducing features which occur at growth, its value as a structural material for extensive structural applications is limited. Engineered wood products such as glue laminated timber (glulam) were thereforedeveloped to improve the use of natural timber beyond its natural limitations.
Structural glued laminated timber is an engineered structuraltimber glued up from suitably selected and prepared pieces ofstress graded lumber either in a straight or curved form with the grain of all pieces essentially parallel to the longitudinal axis of the member (APA, 1996; Manja et al., 2010). According to the American plywood association (APA, 2013), glulam has remained the most resource-efficient approach to wood building products when it comes to optimizing products from a carefully managed timber resource. Glued laminated wood can be built out of defective wood without losing its strength properties as reported by Reginaet al.,(2010). The application of glue laminated timber as a construction material would therefore make many species of timber previously regarded as non-merchantable useful for structural purpose. Clearly, this has the potential to revamp the forestry industry making it a massive employer of labor. Glulam can also be manufactured from small diameter fast growing tree, thereby bridging the supply deficit from slow growing trees(Evalinaet al.,2010). According to the American institute of timber construction.
-
-
-
ABSRACT - [ Total Page(s): 1 ]Timber isa construction material with unparalleledenvironmental credential. Howbeit, limitations of span and crossectional dimension, strength reducing defects and anisotropy limits its engineering application. Mechanical methods of jointing to address the earlier challenge has introduced serious wood fiber failure and increased the embodied energy in timber as a green material. However, developed societies have established in literature the possibility of overcoming these limitations to utilize ... Continue reading---
-
ABSRACT - [ Total Page(s): 1 ]Timber isa construction material with unparalleledenvironmental credential. Howbeit, limitations of span and crossectional dimension, strength reducing defects and anisotropy limits its engineering application. Mechanical methods of jointing to address the earlier challenge has introduced serious wood fiber failure and increased the embodied energy in timber as a green material. However, developed societies have established in literature the possibility of overcoming these limitations to utilize ... Continue reading---
CHAPTER ONE -- [Total Page(s) 1]
Page 1 of 1
CHAPTER ONE -- [Total Page(s) 1]
Page 1 of 1