• Refining Of Soya Bean Oil

  • CHAPTER ONE -- [Total Page(s) 3]

    Page 2 of 3

    Previous   1 2 3    Next
    • The soap stock can be dried if refining is done adjacent to an extraction plant or acidified again to remove fatty acids and sold to the olechemical industry. The oil is then water washed and centrifuge one or two times to remove residual soaps.
      According to GS Breck and S.C Bhatia, a total degumming process for removing essentially all the phosphatide from soyabean oil using first an acid and then an alkali and two centrifuges has shown higher yields than conventional refining. This process however, does not remove prooxidant metals efficiently and for this reason has not found commercial acceptance in the united state.
      G.S Breck and S.C Bhatia have stated that Dijkstra has described a novel process where the washing water is recycled to the oil feed and use to dilute concentrated alkali. This process does not generate an aqueous effluent and can be used for both acid and alkali refining, thus allowing refiners to change gradually from alkali refining to physical refining. Neutralization of soyabean oil with alkali solution assures elimination of free fatty acids without notable change in the phosphatide content. The phosphatidic concentration obtained from oil previously neutralized in the miscella was of higher quality than the phosphatidic concentration obtained from the oil of the starting miscella. Aqueous ammonia has the advantage of being safe for the environment because the deacidification agent can be repeated or reused. Oils especially soyabean oil with low degree of oxidation can be fully deacidified only with the help of the ammonia. The same effect can frequently be achieved by a preliminary desliming with 5 percent formic or citric acid. Deodourization at 2100c of oils that have been deacidified with ammonia and washed with water yield bland and pale edible oils having good storability (G.S Breck and S.C Bhatia).
      List and Erickson state that of all the unit processing operations, refining has the most significant effect on oil quality measured by colour, oxidative stability and storage properties.
      If soyabean oil is not properly refined, subsequent processing operation such as bleaching, hydrogenation and deodourization will be impared so that finished products will not fail to meet quality standards. Also, poor refining will reduce the yield of natural oil, thereby lowering manufacturing profits. (JAOCS, Vol. 60).
      According to G.S Breck and S.C Bhatia, caustic refining removes free fatty acid to 0.01-0.03percent level and remove virtually all the phosphatides. Crude soyabean oil contains trace amount (several part per million (ppm)) of prooxidant metals such as iron and copper. Caustic refining usually removes 90-95 percent of these metals. However, it should be emphasized that even though caustic refining reduces metallic contamination to low levels, residual iron and copper still remain strong prooxidants in refined oils and must be taken in to account during storage and handling. At a constant percentage of water, the total amount of caustic used influences colour removal ie the more caustic used, the lower the colour of the refined oil.
      List and Erickson reported that plots of residual iron versus residual phosphorus content of deodourized oil showed that iron increases at phosphorus content below about 1ppm, reaches a constant value of about 2-20ppm phosphorus, then beings to increase. Thus, the decreased oxidative to stability at phosphorus content above 20ppm can be explained by the sufficiently high iron content (ie greater than 0.2 ppm) which exerts a strong prooxidant effect. Similarly, decreased stability at phosphorus content below 2ppm can also be explained because of the increased iron content. At the same time, it should also be pointed out that the traditional method for calculating the amount of refining lye is based on the free fatty acid content and therefore gives no indication of conditions leading to optimum phosphorus removal. Phosphatide content generally exceed that free fatty acids in crude soyabean oil by a factor of about 6. In refining process control, crude oil is usually educated for refining cost by the American oil chemist‟s society (AOCS) chromatographic method. (JAOCS, vol 60).

  • CHAPTER ONE -- [Total Page(s) 3]

    Page 2 of 3

    Previous   1 2 3    Next
    • ABSRACT - [ Total Page(s): 1 ]This project work studied the refining of crude soya bean oil extracted from soya bean seed using alkali /caustic refining method. The work was carried out using phosphoric acid for the degumming /pretreatment process and sodium hydroxide for the neutralization /refining of the oil. Certain tests were carried out on both the crude and refined oil such as saponification value, acidic value, iodine value, specific gravity and viscosity, the results obtained after the tests include 42.075, 164.28, ... Continue reading---