• The Effect Of Partial Replacement Of Conventional Fine Aggregate (sand) With Lateritic Soil In The Production Of Sandcrete Bricks

  • CHAPTER ONE -- [Total Page(s) 2]

    Page 2 of 2

    Previous   1 2
    • 1.2    Relief and Drainage
          The study area is well drained but some parts of the city close to the flood plain of the Asa river valley have drainage problems caused by the high ground water table during the raining season (Oyegun, 1982).
          The topography of Ilorin is a well dissected land scape with a plateaus like surface covered by lateritic crust. The elevation of the study is 310m and it is considerably revolved from the harvest river valley.
      1.3    Climate and Vegetation
          The climate of Ilorin is the humid tropical type, characterized by both the wet and dry season with a mean annual temperature of 25 to 28.9 0C, also the mean rainfall 1,150mm, exhibiting the double maximum pattern between April and October every year. Days are very hot during the dry season from November to February, temperature typically ranges from 33 to 34 0C while from February to April, values are frequently between 34.6 and 370C (Jimoh, 1997).
          Essentially, Ilorin is located in the transition zone between the deciduous (rain forest) of the south west ad savannah grass lands of the north (Oyegun, 1982).
          The vegetation of Ilorin is composed of species of plant such as locust bean trees, shear butter trees, acacia trees, elephant grasses, shrubs and herbaceous plant among others are common in this area (Oyegun, 1982).
          Further, from research of Jimoh (1997), Ilorin is underlain by basement complex rocks which composed largely of metamorphic especially Gneiss are resistance quartzites. The soil of Ilorin from the precambbian basement rocks and it is under the grass land savannah forest cover and belongs to the soil ferrugenious soil
      1.4     Aim and Objectives
      The aim of this study is to investigate the effect of partial replacement of conventional fine aggregate (sand) with lateritic soil in the production of sandcrete bricks.
      1.5     Objectivesof the Study
      The objectives of this project are;
      i.    to determine the compressive strength of each of the brick units when they have completely cured.
      ii.    to determine the maximum permissible percentage replacement with lateritic soil that satisfied this standard requirements.
      1.6     Statement of the Problem
      A major factor affecting the construction industry in developing countries is the cost of building materials some of which have to be imported. As prices increase sharply, there is a growing awareness to relate research to local materials as alternatives for the construction of functional but low-cost dwelling both in the urban and rural area of Nigeria.
      This work seeks to study the possibility of using laterite as replacement for conventional fine aggregate (sand) in sandcrete brick production with the view of reducing the cost of building construction.
      1.7     Justification
       This research work will be carried out in order to replace conventional fine aggregate used
      for sandcrete bricks production with lateritic soils in order to reduce the cost of production. This will be made possible due to the availability of laterite everywhere.
      1.8    Scope and Limitation of the Study
      The scope of this study will cover the determination of the strength of laterite replaced sandcrete brick. The investigation will be done for 10%, 20% and 30% replacement of sand with laterite available in the location of the study. The soil sample will be collected from three (3) different location in the study area. At a depth ranging from 1 meter to 2 meter of the soil profile. However, the lateritic soil firstly be characterized. The tests that will be conducted in the laboratory are Atterberg Limits Tests, Grain Size Analysis, Specific Gravity Test, Soil Compaction Test, Compression Test and the Determination of Moisture Content.
      Theapplication of the result of this study will however, be limited to the locations of sample collection. Nonetheless, it can serve as guide in the evaluation of laterite from other location as replacement for fine aggregates in sandcrete bricks production.
  • CHAPTER ONE -- [Total Page(s) 2]

    Page 2 of 2

    Previous   1 2
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACT WILL BE HERE SOON ... Continue reading---

         

      CHAPTER TWO - [ Total Page(s): 9 ]CHAPTER TWO2.0     Literature ReviewLaterite is often used to describe the clinkered siliconized clay material. According to Amu et.al. (2011), it could be described as materials with no reasonable constants properties while Villain Cocinaet et.al. (2003), described it as a red friable clay surface, a very hard homogenous vesicular massive clinker-like material with a framework of red hydrated ferric oxides of vesicular infill of soft aluminum oxides of yellowish color. Villain Cocinaet et.al ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 7 ]ProcedureAbout 200g of soil sample was passed thoroughly with distilled water to form a uniform paste. A portion of the paste was placed in a brass trough bar (linear shrinkage trough device). The surface of sample was leveled and smoothened off to the brass of the trough bar and the trough was then placed in an oven for 24 hours at temperature of about 105°C. The initial length of the trough bar filled with the soil sample was taken. After 24 hours, the trough bar was brought out of the oven ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 15 ]PERCENTAGE OF STABILIZER ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE5.0    CONCLUSIONS, REFERENCE AND RECOMMENDATION. 5.1     Conclusion. Tests have been conducted to evaluate the suitability of lateritic soils along  Asa dam area Ilorin kwara state and its effect on the strength of sandcrete bricks when used to replace the conventional fine aggregate, the following conclusions can be drawn from the analysis of the results: I.     The use of lateritic fine as a partial replacement has a significant influence on the engineering pro ... Continue reading---

         

      REFRENCES - [ Total Page(s): 3 ]REFERENCESAdam, E. A. (2001): Compressed Stabilised earth block manufactured in sudan, A. Publication for UNESCO (online) Available from http://unesdoc.unesco.org.Adepegba, D.A. (1975). “Comparative Study of Normal Concrete which contains Laterite Fines instead of Sand” Building Science; 10:135-41.Agbede, I.O. and Manasseh, V. (2008): use of cement sand admixture in lateritic brick production for low cost housing Leonardo electric Journal of practices and technology, 12, pp163-174.Ak ... Continue reading---