• The Effect Of Admixtures On Properties Of Co`ncrete
    [CASE STUDIES OF SUGAR, COW BONE ASH, GROUDNUT SHELL ASH, AND LIME STONE POWDER]

  • CHAPTER ONE -- [Total Page(s) 2]

    Page 2 of 2

    Previous   1 2
    • 1.2.      AIM AND OBJECTIVES OF THE STUDY                                   
               The aim of this project is to determine the effects of limestone powder(LP),sugar, groundnut shell ash(GSA)and cow bone ash(CBA) admixtures on the properties of concrete.                         
                   The objectives of the study are alighted below:          
      i.    To know how admixtures affect concrete in term of its workability, setting time, durability and strength.
      ii.    To enable one to know the cost of using the various admixtures.
      iii.    To be able to compare concrete with admixture and concrete without admixture in term of their strength, workability.               
      1.3.    JUSTIFICATION OF THE STUDY                               Admixture has been in use for a very long time, such as     calcium chloride to provide a cold-weather setting concrete. Others are more recent and represent an area of expanding possibilities for increased performance. These types of admixtures are available in two forms, which are mineral or chemical admixture. Admixture like fly-ash, silicate fume, slag comes in category of mineral admixture, while chemical admixtures are super plasticizers, accelerator, water reducer, retarder and air entrainer.                      Admixtures are used to modify the properties of concrete such as to improve workability, curing temperature range, setting time, increase strength, retard or accelerate strength development, reduce segregation, decrease or reduce permeability, increase bond of concrete to steel reinforcement, increase durability or resistance to severe condition of exposure. Generally, an admixture will affect more than one properties of concrete and its effect on all the properties of the concrete must therefore be considered.                     Admixture may increase or decrease the cost of concrete by reducing cement quantity required for a given strength changing the volume of the mixture, or reducing the cost of concrete placing and handling operations. Control of setting time of concrete may result in decreasing waiting time, repetition in the preparation of concrete in a large construction and therefore eliminating construction joint.                                
      1.4.       SCOPE OF THE STUDY                                      The scope and limitation of this project is basically the effect of admixture on the properties of concrete. In view of the above facts, the extent at which some of the admixture hamper or enhances the properties of concrete is a motivating factor on this project. In this project limestone powder(LP), sugar, groundnut shell ash(GSA), cow bone ash(CBA) will be considered. The first three are retarding admixtures and consistency test of cement such as sieve analysis, slump, and compressive strength etc. would be carried out on the samples.

  • CHAPTER ONE -- [Total Page(s) 2]

    Page 2 of 2

    Previous   1 2
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACT    The project titled “The effect of admixtures on properties of concrete: case study of sugar, cow bone ash, groundnut shell ash, and lime stone powder” was carried out with the aim of knowing the effect the of the various types of admixtures used on the properties of concrete, in term of the workability of concrete, durability of concrete and the concrete strength. The material used are cow bone ash, groundnut shell ash, sugar and lime stone powder. The cow bone was sou ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable 4.1: Data Analysis for Fine Aggregates (Sand)  Table 4.2:  Data Analysis for Coarse Aggregate (Granite) Table 4.3: Slump Test Result for GSA Concrete  Table 4.4:  Slump Test Result for CBA Concrete  Table 4.5:  Slump Test Result for Sugar Concrete  Table 4.6:  Slump Test Result for LP Concrete Table 4.7:  Summary of Slump Test Result for Various Concrete Admixtures Table 4.8:  Compressive Strength Test Result of Normal Concrete Table 4.9:  Compressive Strength Test ... Continue reading---

         

      LIST OF PLATES - [ Total Page(s): 1 ]LIST OF PLATESPlate 3.1: Groundnut Shell  and  Cow Bone   Plate 3.2: Burning of Groundnut Shell and Cow Bone Plate 3.3: Cow bone ash, Groundnut shell ash, Limestone powder and Sugar. Plate 3.4:      Batching of Concrete  Plate 3.5:      Type of Slump Plate 36:      Cube Production Plate 3.7:      Curing of Cubes  Plate 3.8:      Crushing Machine  ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFigure 4.1: The graph of sieve analysis for Fine Aggregate (Sand) Figure 4.2: The graph of sieve analysis for Coarse Aggregate  (Granite).  Figure 4.3: The graph of slump test result for GSA Concrete Figure 4.4: The graph of slump test result for CBA Concrete Figure 4.5: The graph of slump test result for SUGAR Concrete  Figure 4.6: The graph of slump test result for LP Concrete Figure 4.7: The graph for summary of slump test result for various Concrete AdmixturesFigure 4.8: Th ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTSTitle Page   Declaration   Certification   Dedication   Acknowledgement Abstract     Table of Contents  List of Tables   List of Figures List of Plates  CHAPTER ONE                                      1.0    Introduction  1.1    Statement of the Problem  1.2    Aims and Objectives of the Study   1.3    Justification of the Study   1.4    Scope of the Study   CHAPTER TWO 2.0    literature Review   2.1    Concrete ... Continue reading---

         

      CHAPTER TWO - [ Total Page(s): 6 ]While inorganic retardants include; oxide of lead and zinc, phosphates, magnesium salt fluorides, soluble zinc, soluble borates etc.3.         Air-entrainers: These are probably the most important group of admixtures. They improve durability of concrete; in particular, it’s resistance effect of frost and de-icing salts. The entrainment of air in the form of very small and stable bubbles can be achieved by using framing agents based on natural wood resins, animal or vegetable fat an ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 8 ]CHAPTER THREE3.0     PROJECT METHODOLOGY     For successful accomplishment of the aims and objectives of this project the following methods are applied.i.    Market survey for the most commonly used cement was carried out and it was found that elephant and dangote cement are the most commonly used in the locality due to their availability in the market all time.ii.    Text books, internet and some experienced practicing engineer are consulted in order to obtain relevant and detailed ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 16 ]D10 = 1.686μmm = 0.169mmD30 = 273.6μmm = 0.274mmD60 = 503.75μmm =0.504mmi.    The effective grain size; i.e. D10 = 0.169mmii.    Uniformity coefficient, Cu =      =   = 2.98iii.    Coefficient of curvature, Cc =     =   =   = 0.88D10 = 7.6mmD30 = 12.8mm D60 = 15.2mmi. The effective grain size; i.e. D10 = 7.6mm ii. Uniformity coefficient, Cu =      =   = 2.0iii. Coefficient of curvature, Cc =   =   =   =1.42 ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE5.0      CONCLUSION          Based on the results of this investigation, the following conclusion is drawn;         Admixtures affect properties of concrete like its slump value, density, compressive strength, etc.         Admixtures generally decrease the slump value of concrete which in turns decrease the workability of the concrete, since normal concrete(0% concrete) has a slump value of between 55-60mm while concrete with admixture has slump value lesser ... Continue reading---

         

      REFRENCES - [ Total Page(s): 1 ]REFERENCEAkogu Elijah Abalaka (2011): ‘Effects of Sugar on Physical Properties of     Ordinary Portland Cement Paste and Concrete.Albadan B.A, M.A Olutoye, M.S Abolarin & M. Zakariya (2005): ‘Partial     Replacement of Ordinary Portland Cement (OPC)with Bambara     Groundnut Shell Ash (BGSA) in Concrete. Leonard Electronic Journal of     Practices and Technologies. Issues 6, pp. 43 – 48, January – June 2005. Aribisala, O.J & Bamisaye, A.J (2006): ‘Via ... Continue reading---