• Determination Of The Characteristic Strength Properties Of Mild Steel Reinforcement
    [A CASE STUDY OF ILORIN METROPOLIS]

  • CHAPTER TWO -- [Total Page(s) 10]

    Page 4 of 10

    Previous   1 2 3 4 5 6 7 8    Next
    • 2.3.7 Resilience
      The property of a material enabling it to ensure high impact loads without inducing a stress in excess of the elastic limit. All the terms stated from 2.3.6 to 2.3.7 are shown in the fig 2.1.


      2.4 STRESS AND STRAIN
      Stress is known as the resistance to external forces it is measured in terms of the force exerted per unit of area. It may be computed from the expression
      σ=P/A (N/mm^2 )
      Where
      P= force (N)
      A = cross sectional area which stress develops (m^2 )
      There are two basic stresses; normal stress and shear stress. Normal stress act perpendicular to the stressed surface and it can either be Tensile or compressive. When pair of axial forces pulls on a member and tend to elongate or stretch it, the stresses produced is called axial tensile stresses. However when two equal and opposite forces tend to shorten or compress a member, it is called compressive forces.
      Strain
      The terms deformation and strain both represent dimensional change. A very rigid material as steel when subjected to load, will undergo a small deformation strain can be computed by dividing the total deformation strain can be, computed by dividing the total deformation by the original length of he member, Mathematically, this is written.

  • CHAPTER TWO -- [Total Page(s) 10]

    Page 4 of 10

    Previous   1 2 3 4 5 6 7 8    Next
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACT WILL BE HERE SOON ... Continue reading---

         

      APPENDIX A - [ Total Page(s): 6 ] ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTS CHAPTER ONE 1.0    Introduction  1.2    Statement of the Problem   1.3     Aim and Objectives of the Study  1.4    Justification of the Study       1.5    Scope of the Study   1.6    Proposed Methodology   CHAPTER TWO2.0 Literature Review  2.1 Nigerian Steel Industry (Historical Development)  2.2 Engineering Materials and Properties  2.2.1 Cement and Concrete   2.2.2 Aggregates and Sand  2.2.3 Timber and Plywood   2.3 Strength of Materials ... Continue reading---

         

      CHAPTER ONE - [ Total Page(s): 2 ]CHAPTER ONE 1.0    INTRODUCTION     Steel is a man-made material containing 95% of iron. The remaining constituent are small amount of element derived from the raw-material use in the making of the steel, as well as other element added to improve certain characteristics or properties of the product (Marcus, 1964).    Steel reinforcement are used generally in the form of bars of circular cross-section in concrete structure. They are like a skeleton in human body. Plain concrete without s ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 3 ]3.3.2 Principle of OperationWith every 2 revolutions made on the hand or motor driven gear box of high mechanical advantage, a force of 20kN (2000kgf) is applied to a test piece held in the chuck pins. The force deflects the spring beam and this deflection operates a level acting on a piston in a cylinder containing mercury. It should be noted that the mercury inside the sleeve must be at zero point before the drive is made, and this can be alone using the mercury adjuster. The recording graph i ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 8 ]vii.    ELASTIC MODULUSThis is the slope of the straight line portion of each curveSpecimen 1 =(change in stress)/(change in strain) =  295/0.012  = 24583 N/〖mm〗^2Specimen 2 =   240/(0.018 )   = 13333N/〖mm〗^2Specimen 3 = 220/0.012  = 20000N/〖mm〗^2Therefore:Average elastic modulus =   (24583+13333+20000 )/3 = 19305N/〖mm〗^24.1.4 ANALYSIS FOR 16mm MILD STEEL SPECIMENSi. ULTIMATE STRENGTH OR TENSILE STRENGTHSpecimen 1 = 489.48N/ã ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE5.0 CONCLUSION AND RECOMMENDATION From the test carried out and the results obtained, the average yield strength for specimens diameter of 8mm, 10mm, 12mm, 16mm, 2Omm and 25mm were 79N/mm2, 225 N/mm2, 261 N/mm2, 277 N/mm2, 295 N/mm2 and 297 N/mm2 respectively. It was therefore observed that specimen of 8mm and 10m do not meet the BS8110 specification of 250 N/mm2 for mild steel.However, the analysis shows that the average ultimate strength obtained for the specimens of 8mm, 10mm 12mm ... Continue reading---

         

      REFRENCES - [ Total Page(s): 1 ]REFERENCESAlbert, G.G., (1960), ‘Elements of Physical Metallurgy’, 2 Edition, Addison Wesley Publishing Co. Inc., London, pp337-340Arthur, H.N., et aL, (2004), ‘Design of Concrete Structures’, 13th Edition, Tata McGraw Hill Companies, India, pp38-50Bakare, O.S., (2006), Thesis on Determination of Ultimate Tensile Strength of High Tensile Steel Specimens, Civil Engineering Department, University of Ilorin, Nigeria.Kenneth. L -. Dionisio. B.. (1997), ‘Reinforced con ... Continue reading---