• Investigation On The Characteristics Of Cornstalk Ash Blended Cement

  • CHAPTER TWO -- [Total Page(s) 9]

    Page 4 of 9

    Previous   1 2 3 4 5 6 7 8    Next
    • The most commonly used cement nowadays is a hydraulic cement (i.e. hardens when water is added) known as Portland cement or Portland cement blends. These are usually the basic ingredient in making concrete, which is a construction material used as a load-bearing element. Portland cement is suitable for wet climates and can be used underwater. Different types or blends of Portland cement include Portland blast furnace slag cement, Portland fly-ash cement, Portland pozzolan cement, Portland-silica fume cement, masonry cement, expansive cement, white blended cement, colored cement and very finely ground cement.
      According to one of the notable engineering blogs in the world (civiltoday.com) the numerous functions of cement include, but not limited to the following:
      1.    It is used in mortar for plastering, masonry work, pointing, etc.
      2.    It is used for making joints for drains and pipes.
      3.    It is used for water tightness of structure.
      4.    It is used in concrete for laying floors, roofs and constructing lintels, beams, stairs, pillars etc.
      5.    It is used where a hard surface is required for the protection of exposed surfaces of structures against the destructive agents of the weather and certain organic or inorganic chemicals.
      6.    It is used for precast pipes manufacturing, piles, fencing posts etc.
      7.    It is used in the construction of important engineering structures such as bridges, culverts, dams, tunnels, lighthouses etc.
      8.    It is used in the preparation of foundations, watertight floors, footpaths etc.
      9.    It is employed for the construction of wells, water tanks, tennis courts, lamp posts, telephone cabins, roads etc.
  • CHAPTER TWO -- [Total Page(s) 9]

    Page 4 of 9

    Previous   1 2 3 4 5 6 7 8    Next
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACT IS COMING SOON ... Continue reading---

         

      APPENDIX A - [ Total Page(s): 3 ]Appendix D: Concrete cubes after 28days curing. ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable 4.1    Chemical Composition of Cornstalk AshTable 4.2    Results for Surface Area, Residue and Expansion Table 4.3    Compressive Strength for Ordinary CementTable 4.4    Compressive Strength of Cornstalk Blended Ash-10Table 4.5         Compressive Strength of Cornstalk Blended Ash-20Table 4.6    Flexural Strength of Ordinary Cement, 10 and 20 Blended CementTable 4.7    Compressive Strength of Ordinary Cement, 10 and 20 Blended Cement ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFigure 2.1:    Properties of CementFigure 3.1:    Corn plantFigure 3.2:    Specimen of CornstalkFigure 3.3:    Cornstalk AshFigure 4.1:    Flexural Strength Graph of Ordinary CementFigure 4.2:    Compressive Strength Graph of Cornstalk Blended Ash ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTTitle pageCertificationDedicationAcknowledgement AbstractTable of ContentsList of TablesList of FiguresCHAPTER ONE: INTRODUCTIONi.    Background to the studyii.    Problem statementiii.    Aim of the studyiv.    Objectives of the studyv.    Justificationvi.    ScopeCHAPTER TWO: LITERATURE REVIEW2.0.Introduction2.1.Corn and Corn Cultivation2.2.Corn and Corn Stalk2.3.Chemical Composition of Corn Stalk2.4.Corn Stalk Ash blended Cement and Construction Industry2.5.B ... Continue reading---

         

      CHAPTER ONE - [ Total Page(s): 2 ]ix.    Aim of the studyThe aim of this study is to investigate the characteristics of corn stalk blended cement as a partial replacement for ordinary portland cement.x.    Objectives of the studyThe main aim of this study is to investigate the characteristics of corn stalk blended cement as a partial replacement for ordinary portland cement while the objectives of the study are:•    To ascertain the characterization of corn stalk ash.•    To determine of the effects of co ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 3 ]In order to get the corn stalk, the leaves and sheaths were removed to expose the stalk. The stalks with a straight stem, free from pest and disease, without insect bites, without apparent defects on the surface of the stems, and with uniform color were selected. The mean length of the corn stalks was 2100mm, the pitch of corn stalk was taken artificially and made into a column shape for use as test specimen with a cross-section of 10mm by 10mm and a length of 100-150mm. Figure 3.2 shows the cor ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 5 ]CHAPTER FOURRESULTS AND DISCUSSIONCorn stalk ash (CSA) is not a good pozzolanic material, since it has the combined percentage composition of silica (SiO2), alumina (Al2O3) and iron oxide (Fe2O3) of 18.78%, which is less than 70%. It therefore does not satisfy the requirement for use as a pozzolana according to ASTM C618(2005). ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE CONCLUSIONS AND RECOMMENDATION5.0  CONCLUSIONSThis study has dealt tremendously on the investigation of the characteristics of cornstalk ash blended cement. The findings of this research has led to the following conclusions:•    The study revealed that Corn stalk ash (CSA) is not a good pozzolanic material because it does not satisfy the standard specified by ASTM C618(2005).•    The compressive strength of the concrete cubes increased with curing period and amou ... Continue reading---

         

      REFRENCES - [ Total Page(s): 3 ]Technical Paper for Industrial Technologies Programme.Rashad, A.: Cementitious materials and agricultural wastes as natural fine aggregate replacement inconventional mortar and concrete. In: Journal of Building Engineering 5 (2016), p. 119–141. SR EN 12350-6:2010: Testing fresh concrete, Part 6: Density. SR EN 12390-3:2009/AC:2011: Testing hardened concrete, Part 3: Compressive strength of test specimens.SR EN 12390-5:2009: Testing hardened concrete, Part 5: Flexural strength of test spec ... Continue reading---