• Evaluation Of Mechanical Properties Of Palm Oil Fuel Ash (pofa) Blended – Granite - Gravel Concrete

  • CHAPTER THREE -- [Total Page(s) 7]

    Page 1 of 7

    1 2 3 4 5    Next
    • CHAPTER THREE
      Study Area
      The research was carried out at the civil engineering laboratory of Ramat Polytechnic Maiduguri, Borno state Nigeria. The area is located between longitude 140 20’’ and 150 00’’ East and latitude 150 00’’ and 160 10’’ North. It lies along Maiduguri-Jos Road, Opposite the Women Teachers’ College, Board of Internal Revenue and Police College Maiduguri. It is located between Metro Police Barrack and Government College Maiduguri.


      3.0 Materials Used and Methodology
      3.1. Materials
      In making any type of concrete, selection of appropriate types of materials is very important as all the properties depends on them. The following materials were used and as explained below.
      3.1.1 Cement
      Portland cement is the most common type of cement in general use around the world. The study used Ordinary Portland Cement OPC and obtained from cement vendors in Maiduguri, Borno State Nigeria.
      3.1.2 Aggregate
      Fine aggregates generally consist of natural sand or crushed stone with most particles passing through a 3/8-inch sieve. Coarse aggregates are any particles greater than 0.19 inch, but generally range between 3/8 and 1.5 inches in diameter. River aggregates were used and obtained from vendors within Maiduguri.

  • CHAPTER THREE -- [Total Page(s) 7]

    Page 1 of 7

    1 2 3 4 5    Next
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACTUtilizing Palm Oil Fuel Ash (POFA) in concrete mix is a major way of turning waste to wealth. Gravel as an aggregate is cheaper than granite. Thus, obtaining an optimum combination of these materials in achieving a maximum compressive strength in concrete will go a long way in helping the construction industry.The study was carried out to establish an optimum replacement ratio for Palm Oil Fuel Ash (POFA) blended granite-gravel of concrete. Uniform water/binder (w/b) ratio of 0.5 and mix ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable 2. 1: Chemical composition range of OPC and POFA Table 2. 2: Chemical composition analysis in POFA Table 2. 3: Compressive strength of concrete with various percentages of POFA Table 2. 4: Tensile strength of concrete by the addition of various % of POFA Table 3. 1: Concrete mix design based on design expert Table 4. 1:  Oxides composition of POFA Table 4. 2: Fine sand grain size distributions from sieve analysis Table 4. 3: Granite size distributions from sieve analysis  T ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFigure 2. 1: Strength versus UPV Figure 2. 2: Compressive strength versus POFA replacement percentage  Figure 2. 3: Strength activity index of POFA mortar   Figure 2. 4: Relationship between UPV and replacement percentage  Figure 2. 5: Slump flow against POFA percentage  Figure 2. 6: Relationship between porosity and POFA content Figure 2. 7: Relationship between strength and porosity of 80% content of POFA mortar  Figure 2. 8: relationship between permeability and replaceme ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTSCERTIFICATION  DEDICATION  ACKNOWLEDGEMENT  LIST OF TABLES  LIST OF FIGURES  ABSTRACT  CHAPTER ONE    INTRODUCTION    1.1 Background of the study    1.2 Scope     1.4 Justification    1.5 Statement of Problem   1.6 Aim   1.7 Objectives CHAPTER TWO     LITERATURE REVIEW     2.1 Properties of concrete with POFA      2.1.1 Physical properties      2.1.2 Chemical Properties of POFA      2.1.3 Mechanical properties of POFA   2.2 Compressive St ... Continue reading---

         

      CHAPTER ONE - [ Total Page(s): 2 ]CHAPTER ONEINTRODUCTION1.1 Background of the study        Concrete is regarded as the primary and widely used construction ingredient around the world in which cement is the key material. However, large scale cement production contributes greenhouse gases both directly through the production of CO2 during manufacturing and also through the consumption of energy (combustion of fossil fuels). Moved by the economic and ecological concerns of cement, researchers have focused on finding a subs ... Continue reading---

         

      CHAPTER TWO - [ Total Page(s): 9 ]However, POFA contribute to its long-term strength due to the continuous pozzolanic reaction because of the fine particle size, the greater glassy phase of SiO2 and the reduced composition of carbon (Zeyad et al., 2012). This is also proved by Altwair et al. (2011) using the strength activity index which is the ratio of the strength of SCM-cement mortar to cement mortar at specific curing time. 2.3 Ultrasonic Pulse Velocity (UPV) of Concrete with Replaced POFA      According to Kanadasan & ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 15 ]Figure 4.2 shows effect of granite and POFA mix ratio on compressive strength of concrete. The graph shows that, the increase in granite volume led to increase in compressive strength. However, increase in POFA percentage led to decrease in compressive strength. It can be observed that, the highest compressive strength was achieved at 25% POFA replacement and lowest at 35% replacement. Also, for granite highest and lowest compressive strength were achieved at 100% and 0% replacement respectively ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]        CHAPTER FIVECONCLUSION AND RECOMMENDATIONS5.1    Conclusion The study determined the compressive strength of granite-gravel concrete at varying replacement of Palm Oil Fuel Ash (POFA) at different curing ages. Also, established an optimum replacement of Palm Oil Fuel Ash (POFA) blended granite-gravel. Therefore, the following conclusions were drawn:1.    The increase in granite volume led to increase in compressive strength. However, increase in POFA percentage led to decrea ... Continue reading---

         

      REFRENCES - [ Total Page(s): 2 ]REFERENCESAltwair, N.M., Johari, M.A.M. and Hashim, S.F.S., 2013. Influence of treated palm oil fuel      ash on compressive properties and chloride resistance of engineered         cementitious composites. Materials and Structures, 47(4), pp.667–682.  Aprianti, E., Shafigh, P., Bahri, S. and Farahani, J.N., (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, pp.176–187.  Asrah, H., Mirasa, ... Continue reading---