• The Effect Of Antidiabetic Agent Glibenclamide And Meltformine On Lipids And Glycated Haemoglobin In Type 2 Diabetes Patient Attending Uith Ilorin

  • CHAPTER TWO -- [Total Page(s) 11]

    Page 1 of 11

    1 2 3 4 5    Next
    • CHAPTER TWO
      LITERATURE REVIEW
      2.0 INTRODUCTION
      Diabetes mellitus (DM) is a group of metabolic disorders characterized by a chronic hyperglycemic condition resulting from defects in insulin secretion, insulin action or both. Permanent neonatal diabetes is caused by glucokinase deficiency, and is an inborn error of the glucose-insulin signaling pathway (Njolstad et al., 2003).
      The prevalence of diabetes is increasing rapidly worldwide and the World Health Organization (2003) has predicted that by 2030 the number of adults with diabetes would have almost doubled worldwide, from 177 million in 2000 to 370 million. Experts project that the incidence of diabetes is set to soar by 64% by 2025‚ meaning that staggering 53.1 million citizens will be affected by the disease (Rowley and Bezold, 2012). The estimated worldwide prevalence of diabetes among adults in 2010 was 285 million (6.4%) and this value is predicted to rise to around 439 million (7.7%) by 2030 (Shaw et al., 2010). There are two main types of Diabetes mellitus:
      i.    Type 1 diabetes, also called insulin dependent Diabetes mellitus (IDDM), is caused by lack of insulin secretion by beta cells of the pancreas.
      ii.    Type 2 diabetes, also called non-insulin dependent Diabetes mellitus (NIDDM), is caused by decreased sensitivity of target tissues to insulin.
      The reduced sensitivity to insulin is often called insulin resistance and its causes are shown in Table 1.


      In both types of Diabetes mellitus, metabolism of all the main foodstuffs is altered. The basic effect of insulin lack or insulin resistance on glucose metabolism is to prevent the efficient uptake and utilization of glucose by most cells of the body, except those of the brain (Guyton and Hall, 2006). As a result of this, blood glucose concentration increases, cell utilization of glucose falls increasingly lower and utilization of fats and proteins increases. The clinical characteristics of patients with type 1 and type 2 Diabetes mellitus are shown in Table 2.

  • CHAPTER TWO -- [Total Page(s) 11]

    Page 1 of 11

    1 2 3 4 5    Next
    • ABSRACT - [ Total Page(s): 1 ]Abstract Is Coming Soon ... Continue reading---

         

      APPENDIX A - [ Total Page(s): 1 ]APPENDIX IQUESTIONAIRE TO ACCESS THE ANTHROPOLOGIC INDICES OF PATIENTS WITH TYPE TWO DIABETES MELLITUS ON ANTIDIABETIC DRUGS (METFORMIN AND GLIBENCLAMIDE) ATTENDING UITH ILORIN.INTRODUCTION: I am a final year students of the Department of Medical Laboratory Science, School of Basic Medical Sciences, Kwara State University, Malete, Kwara State. This questionnaire is aimed at accessing the demographic indices of patients with type 2 Diabetes mellitus on metformin and diabinese in Ilorin metropolis ... Continue reading---

         

      APPENDIX B - [ Total Page(s): 5 ]Step 2100µl of the supernatant was dispensed into the clean test tubes respectively.2ml of the cholesterol reagent was addedIt was incubated at room temperature for 10minsAbsorbance of sample against reagent blank was measured at 505nmGlycated HaemoglobinGlycated Haemoglobin is a form of haemoglobin that is measured primarily to identify the three-month average plasma glucose concentration. The test is limited to a three-month average.ProcedureReagentsBlank(µl)             samp ... Continue reading---

         

      CHAPTER ONE - [ Total Page(s): 2 ]The present study was designed to investigate and compare the effects of glibenclamide and metformin on prevalence of metabolic syndrome in type 2 diabetic patients.1.2    STATEMENT OF PROBLEMTo know if antidiabetic agents glibenclamide and meltformine has any effect on lipid and glycated haemoglobin in type 2 diabetes patients1.3     AIM OF STUDYTo evaluate the effect of antidiabetic agent glibenclamide and meltformine on lipids and glycated haemoglobin in type 2 diabetes patient attendi ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 1 ]CHAPTER THREE3.1    Material and Method3.2 Study AreaThe study was carried out at University of Ilorin Teaching Hospital, Ilorin, Kwara State. The hospital is located at the State capital of Ilorin, Kwara State Nigeria. It is a referral center to other public and private hospitals within and outside the state.3.3    SAMPLE SIZE DETERMINATIONThere was a random selection of ninety (90) subjects, 60 were type 2 Diabetes mellitus individual using either one or combine antidiabetic agent (glibe ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 4 ]Tables 4.6: Correlation of Duration in Diabetes and BMI with biochemical parameters (T. cholesterol, High Density Lipoprotein, Low Density Lipoprotein, triglycerides, glycated, and fasting blood sugar) in Diabetic patient using antidiabetic drugs (Metformin and Glianpride). ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 2 ]CHAPTER FIVE5.0 DISCUSSIONThe study shows discrepant results about the influence of metformin on lipid profile (10). Some studies, in agreement with ours, reported reduction only in TC levels (Grant, 1996; Ginsberg et al., 1999), while others reported reduction of TC and TG with an increase of HDL-C (Robinson et al., 1998; Yki-Jarvinen et al., 1999). Still other studies showed no changes in lipid profile (Groop et al., 1998; Rains et al., 1998). Another investigation showed an association of met ... Continue reading---

         

      REFRENCES - [ Total Page(s): 3 ]Rodger, W. (2012). Sulphonylureas and heart disease in diabetes management. Diabetes Spectrum. Pg. 12–27.Rosenbaum, M. and Leibel, R. L. (2014). Role of leptin in energy homeostasis in humans. Journal of Endocrinology. 223(1): 83-96.Rowley, D.E. and Bezold, D.C. (2012). Using new insulin strategies in the outpatient treatment of diabetes: clinical applications. Journal of American Medical Association. Pg. 289.Shaw, D., De Rosa, N. and Di Maro, G. (2010). Metformin improves glucose, lipid ... Continue reading---