• Improving The Capacity Of A Renewable Power System, Using Solar Power Panel

  • CHAPTER ONE -- [Total Page(s) 4]

    Page 2 of 4

    Previous   1 2 3 4    Next
    • One of the greatest scientific and technological opportunities researchers are faced with is approaches to developing efficient ways to collect, convert, store, and utilize solar energy at an affordable cost. The solar power reaching the earth’s surface is about 86,000 TW. Covering 0.22% of our planet with solar collectors with an efficiency of 8% would be enough to satisfy the current global power consumption. Estimates are that an energy project utilizing concentrating solar power (CSP) technology deployed over an area of approximately 160 x 160 km in the Southwest U.S. could produce enough power for the entire U.S. consumption.
      Solar-sourced electricity can be generated either directly using photovoltaic (PV) cells or indirectly by collecting and concentrating the solar power to produce steam, which is then used to drive a turbine to provide the electric power (CSP).
      Concentrating solar thermal systems use optical devices (usually mirrors) and sun-tracking systems to concentrate a large area of sunlight onto a smaller receiving area. The concentrated solar energy is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists, the main ones being parabolic troughs, solar dishes, linear Fresnel reflectors, and solar power towers. The primary purpose of concentrating solar energy is to produce high temperatures and therefore high thermodynamic efficiencies.
      Parabolic trough systems are the most commonly used CSP technology. A parabolic trough consists of a linear parabolic mirror that reflects and concentrates the received solar energy onto a tube (receiver) positioned along the focal line. The heat transfer fluid is pumped through the receiver tube and picks up the heat transferred through the receiver tube walls. The parabolic mirror follows the sun by tracking along a single axis. Linear Fresnel reflectors use various thin mirror strips to concentrate sunlight onto tubes containing heat transfer fluid. Higher concentration can be obtained, and the mirrors are cheaper than parabolic mirrors, but a more complex tracking mechanism is needed.
      1.2    STATEMENT OF THE PROBLEM
      The uncertainty and intermittency of solar generation are major complications that must be addressed before the full potential of this renewable power system can be reached. The researcher provides an overview of a solar power panel withan evolution of electricity networks toward greater reliance on communications, computation, and control which is a way aimed at improving it.
      The application of advanced digital technologies (i.e., microprocessor-based measurement and control, communications, computing, and information systems) which are expected to greatly improve the reliability, security, interoperability, and efficiency of the electrical grid, while reducing environmental impacts and promoting economic growth will be considered.

  • CHAPTER ONE -- [Total Page(s) 4]

    Page 2 of 4

    Previous   1 2 3 4    Next