• To Develop Mathematical Models For Power Losses Along Transmission Lines And To Minimize The Losses Using Classical Optimization Techniques

  • CHAPTER ONE -- [Total Page(s) 3]

    Page 2 of 3

    Previous   1 2 3    Next
    • (Crombie, 2006), to mention a few, various researchers have also worked on the flow of power on electrical networks. (Pandya, 2008) presents a comprehensive survey of various optimization methods for solving optimal power flow problems. The methods considered in the work include linear programming, Newton-Raphson, quadratic programming, nonlinear programming, interior point and artificial intelligence. Under the artificial intelligence method, the following were also considered artificial neural network method, fuzzy logic method, genetic algorithm method, evolutionary programming method, ant colony optimization method and particle swarm optimization method. It was found in the paper that the classical methods have a lot of limitations. In most cases, mathematical formulations have to be simplified to get the solutions because of the extremely limited capability to solve real-world large-scale power system problems. The classical methods are weak in handling qualitative constraints and they have very poor convergence. The methods are also very slow and computationally expensive in handling large-scale optimal power flow problems. It was also discovered in the paper that the artificial intelligence methods are relatively versatile for handling various qualitative constraints and that the methods can find multiple optimal solutions in a single simulation.
      They are therefore suitable in solving multi-objective optimization problems.(William, 2002) looked at alternative optimal power flow formulations while(Claudio et al., 2001) worked on comparison of voltage security constraint using optimal power flow techniques.
      (Roya et al., 2008) considered power flow modelling for power systems with dynamic flow controller. Other researchers who also worked on power flow include (Bouktir et al., 2004).
      In addition, several researchers have also worked on electric power systems. (Aderinto, 2011) worked on an optimal control model of the electric power generating system. In the research work, she developed a mathematical model for the electric power generating system using the optimal control approach and characterized the mathematical model by prescribing the conditions for the optimality of the electric power generating system and the analytic requirements for the existence and uniqueness of the solution to the system. The optimality condition for the model was determined and the model was solved analytically and numerically. In the study, two control variables were identified, the first for load shedding among the generators in the system and the second for restriction on the capacity of the generators. The problem was formulated based on the second control variable since the first control variable can only be on or off as the case may be. The optimality conditions for the system were imposed implicitly on the controls and the mathematical model represents a stable loss-free generating system. From the work, it was shown that the generation loss can be controlled and stabilized. (Oke et al., 2007) considered the perspectives on electricity supply and demand in Nigeria while (Ibe, 2007)looked at optimized electricity generation in Nigeria. (Bamigbola, 2009)characterized an optimal control model of electric power generating system.(Karamitsos, 2006) considered an analysis of blackout for electric power transmission systems while (Aderinto et al., 2010) looked at optimal control of air pollution with application to power generating system model. Others whose researches touched on electric power systems include (Savenkov, 2008) to list a few. As such, much emphasis has been on proper design of electrical power systems and reduction of losses using feeder reconfiguration and evolutionary techniques.
      Loss minimization is a critical component for efficient electric power supply systems.

  • CHAPTER ONE -- [Total Page(s) 3]

    Page 2 of 3

    Previous   1 2 3    Next
    • ABSRACT - [ Total Page(s): 1 ]Availability of electric power has been the most powerful vehicle for facilitating economic, industrial and social developments of any nation. Electric power is transmitted by means of transmission lines which deliver bulk power from generating stations to load centres and consumers. For electric power to get to the final consumers in proper form and quality, losses along the lines must be reduced to the barest minimum. A lot of research has been carried out on analysis and computation of losses ... Continue reading---