• Rainfall Trends And Variability

  • CHAPTER ONE -- [Total Page(s) 3]

    Page 1 of 3

    1 2 3    Next
    • CHAPTER ONE
      INTRODUCTION
           1.1 BACKGROUND TO THE STUDY
      Rain is liquid water in form of droplets that have condensed from atmospheric water vapor and then precipitated that is, become heavy enough to fall under gravity (Mordurch, 1995; Sala and Lauenroth, 1982). Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides suitable conditions for many types of ecosystems, as well as water for hydroelectric power plants and crop irrigation. Rainfall is a determinant factor of many natural occurrences. Vegetation distribution and type of land masses are as a result of rainfall (Ronen and Avinoam, 1999;Tielborger and Kadmon,2000; Shukla et al, 1990). Animals breeding periods synchronize with rainfall periods (Radford and Du plessis 2003). Crop planting, yields and harvests are influenced by rainfall and are practiced in accordance with their respective enabling seasons to ensure improved productivity (Laux et al, 2010; Mudita et al, 2008;Omokhafe and Emuedo 2006). Similarly, the gaseous content of the soil composition from time to time is much affected by rainfall (Lee et al, 2002).
      Rainfall trend is the significant change in the spatial and temporal patterns of rainfall. Rainfall trend in other words can be said to be the general tendency, movement, or direction and pattern in which rainfall takes. In the global scene for example, rainfall trend analyses, on  different spatial and temporal scales, has been of great concern during the past century because of the attention given to global climate change from the scientific community: they indicate a small positive global trend, even though large areas are instead characterized by negative trends (IPCC, 1996). Murphy and Timbal (2007) reported that most of the rainfall decline (61%) has occurred in autumn (March–May) in southeastern Australia. A similar rainfall decline occurred in the southwest of Western Australia around 1970 that has many common features with the southeastern Australia decline. However, in the regional level Nicholson (2000) observed that one of the most important contrasts in rainfall is the multi-decadal persistence of anomalies over northern Africa. Nicholson and Grist (2001) had identified several changes in the general atmospheric circulation that have accompanied the shift to drier conditions in West African Sahel. Rotstayn and Lohmann (2002) showed a prominent feature is the drying of the Sahel in North Africa and suggest that the indirect effects of anthropogenic sulfate may have contributed to the Sahelian drying trend (Akinremi et al 2001).
      Rainfall variability on the other hand is the degree to which rainfall amounts vary across an area or through time. Variability of rainfall can be used to characterize the climate of a region. Rainfall in Nigeria is subjected to wide variability both in time and space. This variability has assumed a more pronounced dimension as a result of climate change. According to Chidozie et al, rainfall variability increases from the northwest to the southwest, while between-year (yearly) rainfall variability increases from the north central to the southeast. This study further confirms that rainfall variability over time follows a spatial trend within a certain arbitrary boundary (Laux et al, 2010, Mudita et al 2008).
      The major cause of rain production is moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts. If enough moisture and upward motion is present, precipitation falls from convective clouds (those with strong upward vertical motion) such as cumulonimbus (thunder clouds) which can organize into narrow rain bands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of the mountains. On the leeward side of mountains, desert climate can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass. The movement of the monsoon trough or inter-tropical convergence zone, brings rainy seasons to savannah climes (Laux et al, 2010, Mudita et al 2008). The urban heat island effect leads to increased rainfall, both in amounts and intensity, downwind of cities. Global warming is also causing changes in the precipitation pattern globally, including wetter conditions across Eastern North America and drier conditions in the tropics.

  • CHAPTER ONE -- [Total Page(s) 3]

    Page 1 of 3

    1 2 3    Next