• Matrix And Its Applications

  • CHAPTER ONE -- [Total Page(s) 2]

    Page 1 of 2

    1 2    Next
    • CHAPTER ONE
      INTRODUCTION
      The introduction and development of the notion of a matrix and the subject of linear algebra followed the development of determinants, which arose from the study of coefficients of systems of linear equations. Leibnitz, one of the founder of calculus, used determinant in 1963 and Cramer presented his determinant based formula for solving systems of linear equation (today known as Cramer’s rule) in 1750.
      The first implicit use of matrices occurred in Lagrange’s work on bilinear form in late 1700. Lagrange desired to characterize the maxima and minima of multi-variant functions. His method is now known as the method of Lagrange multipliers. In order to do this he first required the first order partial derivation to be 0 and additionally required that a condition on the matrix of second order partial derivatives holds; this condition is today called positive or negative definiteness, although Lagrange did not use matrices explicitly.
      Gauss developed elimination around 1800 and used it to solve least square problem in celestial computations and later in computations to measure the earth and it’s surface (the branch of applied mathematics concerned with measuring or determining the shape of the earth or with locating exactly points on the earth’s surface is called Geodesy). Even though Gauss name is associated with this technique eliminating variable from system of linear equations there were earlier work on this subject.
      Chinese manuscripts from  several centuries earlier have been found that explains how to solve a system of three equations in three unknown by “Guassian” elimination. For years Gaussian elimination was considered part of the development of geodgesy, not mathematics. The first appearance of Gaussian-Jordan elimination in print was in a handbook on geodesy written by Wihelm Jordan. Many people incorrectly assume that the famous mathematician, Camille Jordan is the Jordan in “Gauss-Jordan elimination”.
      For matrix algebra to fruitfully develop one needed both proper notation and proper definition of matrix multiplication. Both needs were met at about the same time in the same place. In 1848 in England, J.J Sylvester first introduced the term “matrix”, which was the Latin word for “womb” as a name for an array of numbers.
      Matrix algebra was nurtured by the work of Arthur Cayley in 1855. Cayley studied multiplication so that the matrix of coefficient for the composite transformation ST is the product of the matrix S times the matrix T. He went on to study the algebra of these composition including matrix inverses. The famous Cayley-Hamilton theorem which asserts that a square matrix is a root of it’s characteristics’ polynomial was given by Cayley in his 1858 memoir on the theory of matrices. The use of single letter “A to represent a matrix was crucial to the development of matrix algebra. Early in the development, the formular det(AB) = det (A) det(B) provided a connection between matrix algebra and determinants. Cayley wrote “There would be many things to say about this theory of matrices which should, it seems to me, precede the theory of determinants”.

  • CHAPTER ONE -- [Total Page(s) 2]

    Page 1 of 2

    1 2    Next