• Mechanical Properties Of An Aluminium Or Silicon Carbide Composite Connecting Rod Containing Varying Volume Fractions Of Sic

  • ABSRACT -- [Total Page(s) 1]

    Page 1 of 1

    • Metal Matrix Composites (MMC’s) have evoked a keen interest in recent times for potential applications. Composite materials like Particle-reinforced Aluminium Silicon carbide (Al/SiC) Metal-Matrix Composite is gradually becoming very important materials in manufacturing industries e.g. aerospace, automotive and automobile industries due to their superior properties such as light weight, low density, high strength to weight ratio, high hardness, high temperature and thermal shock resistance, superior wear and corrosive resistance, high specific modulus, high fatigue strength etc. In this study, Connecting rods made from commercial pure aluminum alloy (about 99.1% purity) / Silicon carbide (SiC) reinforced particles metal-matrix composites (MMCs) are fabricated by green sand casting. The MMCs connecting rods (Big end ø 68 mm, pin end ø 32 mm, 136 mm Center to Center height) are prepared by varying the reinforced particles by weight fraction ranging from 0%, 5%, 10%, 15%  and 20 %. The average reinforced particles size of SiC are 75 microns (µm), 125 microns (µm) and 300 microns (µm) respectively. The microstructure and mechanical properties like Ultimate tensile strength (MPa), Breaking strength (MPa), Elastic Modulus (Mpa), % Elongation, Hardness (HRB), are investigated on prepared specimens of MMCs. It was observed that the hardness of the composite is increased with increasing of reinforced particle weight fraction. The tensile strength is increased with rising of reinforced weight fraction. Different mechanical tests were conducted and presented by varying the particle size and weight fractions of the Silicon carbide (SiC) particulates.

  • ABSRACT -- [Total Page(s) 1]

    Page 1 of 1

    • CHAPTER ONE - [ Total Page(s): 1 ]CHAPTER ONEINTRODUCTIONA composite is considered to be any multiphase material that exhibits a significant proportion of the properties of both constituent phases such that a better combination of properties is realized. This is termed as the ‘principle of combined action’ (2). According to this principle, better combinations are fashioned by the judicious combination of two or more distinct materials. All composites generally have one thing in common: a matrix or binder ... Continue reading---