CHAPTER ONE
1.0 INTRODUCTION
1.1 Background of the study
Since the beginning of human civilization, medicinal plants have been used by mankind for its therapeutic value. Nature has been a source of medicinal agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources. Many of these isolations were based on the uses of the agents in traditional medicine. The plant-based, traditional medicine systems continues to play an essential role in health care, with about 80% of the world’s inhabitants relying mainly on traditional medicines for their primary health care (Owolabi et al., 2007). Medicinal plants are plants containing inherent active ingredients used to cure disease or relieve pain (Okigbo et al., 2008). The medicinal properties of plants could be based on the antioxidant, antimicrobial antipyretic effects of the phytochemicals in them (Cowman, 1999; Adesokan et al., 2008). The ancient texts like Rig Veda (4500-1600 BC) and Atharva Veda mention the use of several plants as medicine. The books on ayurvedic medicine such as Charaka Samhita and Susruta Samhita refer to the use of more than 700 herbs (Jain, 1968). According to the World Health Organization (WHO, 1977) “a medicinal plant†is any plant, which in one or more of its organ contains substances that can be used for the therapeutic purposes (Okigbo, 2009). The term “herbal drug†determines the part/parts of a plant (leaves, flowers, seed, roots, barks, stems, etc.) used for preparing medicines.
1.2 Statement of the problem
Malaria is a potentially deadly parasitic disease of global public health relevance. The infection is known to cause death and illness in children and adults, especially in tropical countries. In Nigeria, malaria is termed to be endemic and perennial in all parts, with seasonal variations more pronounced in the Northern part (Caraballo, 2014). According to the 2010 national census, 24.2 million Ghanaians are at risk of malaria infection. Children under five years and pregnant women however stand a higher risk of severe illness due to declined immunity (WHO, 2014). The control of malaria requires an integrated approach, including prevention, which deals primarily with vector control and prompt treatment with effective anti-malarial (WHO, 2014).
Management of malaria has seen a lot of changes, mainly as a result of resistance development of P. falciparum against anti-malarials in use. For instance, Chloroquine, which used to be one of the most effective drugs, has now been proven to be ineffective in malaria treatment (Greenwood et al., 2010). Currently, WHO recommends a combination therapy involving any of the artemisinins and other classes of antimalarials for the treatment of uncomplicated malaria (WHO, 2014).
Some of the recommended combinations include, Artesunate -Amodiaquine, Artemether - Lumefantrine, Atovaquone-Proguanil, Chloroquine-Proguanil, and Mefloquine– Sulphadoxine-Pyrimethamine (CDC, 2016).