• Extraction And Characterization Of Vegetable Oil Using Bread Fruit Seed

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 2 of 5

    Previous   1 2 3 4 5    Next
    • 1.4 Negative health effects
      Hydrogenated oils have been shown to cause what is commonly termed the "double deadly effect", raising the level of low density lipoproteins (LDLs) and decreasing the level of high density lipoproteins (HDLs) in the blood, increasing the risk of blood clotting inside blood vessels.
      A high consumption of omega-6 polyunsaturated fatty acids (PUFAs), which are found in most types of vegetable oil (e.g. soyabean oil, corn oil– the most consumed in USA, sunflower oil, etc.) may increase the likelihood that postmenopausal women will develop breast cancer. A similar effect was observed on prostate cancer in mice. Plant based oils high in monounsaturated fatty acids, such as olive oil, peanut oil, and canola oil are relatively low in omega-6 PUFAs and can be used in place of high-polyunsaturated oils.
      1.5 Uses/Importance of Vegetable oils
      1.5.1 Margarine
      Margarine originated with the discovery by French chemist Michel Eugene Chereul in 1813 of margaric acid (itself named after the pearly deposits of the fatty acid from Greek (margaritēs / márgaron), meaning pearl-oyster or pearl, or (margarís), meaning palm-tree, hence the relevance to palmitic acid). Scientists at the time regarded margaric acid, like oleic acid and stearic acid, as one of the three fatty acids which, in combination, formed most animal fats. In 1853, the German structural chemist Wihelm Heinrich Heintz analyzed margaric acid as simply a combination of stearic acid and of the previously unknown palmitic acid.
      Emperor Louis Napoleon III of France offered a prize to anyone who could make a satisfactory substitute for butter, suitable for use by the armed forces and the lower classes. French chemist Hippolyte Mege-Mouries invented a substance he called oleomargarine, the name of which became shortened to the trade name "margarine". Mège-Mouriès patented the concept in 1869 and expanded his initial manufacturing operation from France but had little commercial success. In 1871, he sold the patent to the Dutch company Jurgens, now part of Unilever. In the same year the German pharmacist Benedict Klein from Cologne founded the first margarine factory "Benedict Klein Margarinewerke", producing the brands Overstolz and Botteram.
      Margarine is a semi-solid emulsion composed mainly of vegetable fats and water. While butter is derived from milk fat, margarine is mainly derived from plant oils and fats and may contain some skimmed milk. In some locales it is colloquially referred to as oleo, short for oleomargarine. Margarine, like butter, consists of a water-in-fat emulsion, with tiny droplets of water dispersed uniformly throughout a fat phase which is in a stable crystalline form. Margarine has a minimum fat content of 80%, the same as butter, but unlike butter reduced-fat varieties of margarine can also be labelled as margarine. Margarine can be used both for spreading or for baking and cooking. It is also commonly used as an ingredient in other food products, such as pastries and cookies, for its wide range of functionalities.
      1.5.1.2 Manufacture of Margarine
      The basic method of making margarine today consists of emulsifying a blend of hydrogenated vegetable oils with skimmed milk, chilling the mixture to solidify it and working it to improve the texture. Vegetable and animal fats are similar compounds with different melting points. Those fats that are liquid at room temperature are generally known as oils. The melting points are related to the presence of carbon-carbon double bonds in the fatty acids components. Higher number of double bonds give lower melting points.
      Partial hydrogenation of a typical plant oil to a typical component of margarine, makes most of the C=C double bonds be removed in this process, which elevates the melting point of the product. Commonly, the natural oils are hydrogenated by passing hydrogen through the oil in the presence of a nickel catalyst, under controlled conditions. The addition of hydrogen to the unsaturated bonds (alkenic double C=C bonds) results in saturated C-C bonds, effectively increasing the melting point of the oil and thus "hardening" it. This is due to the increase in van der Waals' forces between the saturated molecules compared with the unsaturated molecules. However, as there are possible health benefits in limiting the amount of saturated fats in the human diet, the process is controlled so that only enough of the bonds are hydrogenated to give the required texture. Margarines manufactured in this way are said to contain hydrogenated fat. This method is used today for some margarines although the process has been developed and sometimes other metal catalysts are used such as palladium. If hydrogenation is incomplete (partial hardening), the relatively high temperatures used in the hydrogenation process tend to flip some of the carbon-carbon double bonds into the "trans" form. If these particular bonds aren't hydrogenated during the process, they will still be present in the final margarine in molecules of trans fats, the consumption of which has been shown to be a risk factor for cardiovascular disease. For this reason, partially hardened fats are used less and less in the margarine industry. Some tropical oils, such as palm oil and coconut oil, are naturally semi solid and do not require hydrogenation.
      Three types of margarine are common:
      • Soft vegetable fat spreads, high in mono- or polyunsaturated fats, which are made from safflower, sunflower, soybean, cottonseed, rapeseed or olive oil.
      • Margarines in bottle to cook or top dishes
      • Hard, generally uncolored margarine for cooking or baking.
      1.5.2 Soap
      In chemistry, soap is a salt of a fatty acid. Soaps are mainly used as surfactants for washing, bathing, cleaning, in textile spinning and are important components of lubricants. Soaps for cleansing are obtained by treating vegetable or animal oils and fats with a strongly alkaline solution. Fats and oils are composed of triglycerides; three molecules of fatty acids are attached to a single molecule of glycerol. The alkaline solution, which is often called lye, (although the term "lye soap" refers almost exclusively to soaps made with sodium hydroxide) brings about a chemical reaction known as saponification. In saponification, the fats are first hydrolyzed into free fatty acids, which then combine with the alkali to form crude soap. Glycerol (glycerin) is liberated and is either left in or washed out and recovered as a useful byproduct, depending on the process employed.
      When used for cleaning, soap allows otherwise insoluble particles to become soluble in water and then be rinsed away. For example: oil/fat is insoluble in water, but when a couple drops of dish soap are added to the mixture the oil/fat apparently disappears. The insoluble oil/fat molecules become associated inside micelles, tiny spheres formed from soap molecules with polar hydrophilic (water-loving) groups on the outside and encasing a lipophilic (fat-loving) pocket, which shielded the oil/fat molecules from the water making it soluble. Anything that is soluble will be washed away with the water. Synthetic detergents operate by similar mechanisms to soap.
      The type of alkali metal used determines the kind of soap produced. Sodium soaps, prepared from sodium hydroxide, are firm, whereas potassium soaps, derived from potassium hydroxide, are softer or often liquid. Historically, potassium hydroxide was extracted from the ashes of bracken or other plants. Lithium soaps also tend to be hard these are used exclusively in greases.
      Typical vegetable oils used in soap making are palm oil, coconut oil, olive oil, and laurel oil. Each species offers quite different fatty acid content and, hence, results in soaps of distinct feel. The seed oils give softer but milder soaps. Soap made from pure olive oil is sometimes called Castile/Marseille soap, and is reputed for being extra mild. The term "Castile" is also sometimes applied to soaps from a mixture of oils, but a high percentage of olive oil.
      1.5.2.1 Purification and finishing
      In the fully boiled process on factory scale, the soap is further purified to remove any excess sodium hydroxide, glycerol, and other impurities, colour compounds, etc. These components are removed by boiling the crude soap curds in water and then precipitating the soap with salt. At this stage, the soap still contains too much water, which has to be removed. This was traditionally done on chill rolls, which produced the soap flakes commonly used in the 1940s and 1950s. This process was superseded by spray dryers and then by vacuum dryers. The dry soap (about 6–12% moisture) is then compacted into small pellets or noodles. These pellets or noodles are then ready for soap finishing, the process of converting raw soap pellets into a saleable product, usually bars.
      Soap pellets are combined with fragrances and other materials and blended to homogeneity in an amalgamator (mixer). The mass is then discharged from the mixer into a refiner, which, by means of an auger, forces the soap through a fine wire screen. From the refiner, the soap passes over a roller mill (French milling or hard milling) in a manner similar to calendering paper or plastic or to making chocolate liquor. The soap is then passed through one or more additional refiners to further plasticize the soap mass. Immediately before extrusion, the mass is passed through a vacuum chamber to remove any trapped air. It is then extruded into a long log or blank, cut to convenient lengths, passed through a metal detector, and then stamped into shape in refrigerated tools. The pressed bars are packaged in many ways.
      Sand or pumice may be added to produce a scouring soap. The scouring agents serve to remove dead cells from the skin surface being cleaned. This process is called exfoliation. Many newer materials that are effective, yet do not have the sharp edges and poor particle size distribution of pumice, are used for exfoliating soaps.
      Nanoscopic metals are commonly added to certain soaps specifically for both colouration and antibacterial properties. Titanium dioxide powder is commonly used in extreme "white" soaps for these purposes; nickel, aluminium and silver compounds are less commonly used. These metals exhibit an electron-robbing behaviour when in contact with bacteria, stripping electrons from the organism's surface, thereby disrupting their functioning and killing them. Since some of the metal is left behind on the skin and in the pores, the benefit can also extend beyond the actual time of washing, helping reduce bacterial contamination and reducing potential odours from bacteria on the skin surface.
      1.5.3 Biodiesel production
      Biodiesel production is the process of producing the biofuel/biodiesel, through the chemical reactions: transesterification and esterification. This involves vegetable or animal fats and oils being reacted with short-chain alcohols (typically methanol or ethanol). The major steps required to synthesize biodiesel are as follows:
      1. Feedstock pretreatment: Common feedstock used in biodiesel production include yellow grease (recycled vegetable oil), "virgin" vegetable oil, and tallow. Recycled oil is processed to remove impurities from cooking, storage, and handling, such as dirt, charred food, and water. Virgin oils are refined, but not to a food-grade level. De-gumming to remove phospholipids and other plant matter is common, though refinement processes vary. Regardless of the feedstock, water is removed as its presence during base-catalyzed transesterification causes the triglycerides to hydrolyse, giving salts of the fatty acids (soaps) instead of producing biodiesel.
      2. Determination and treatment of free fatty acids: A sample of the cleaned feedstock oil is titrated with a standardized base solution in order to determine the concentration of free fatty acids (carboxylic acids) present in the vegetable oil sample. These acids are then either esterified into biodiesel, esterified into glycerides, or removed, typically through neutralization.
      3. Reactions: Base-catalyzed transesterification reacts lipids (fats and oils) with alcohol (typically methanol or ethanol) to produce biodiesel and an impure co-product, glycerol. If the feedstock oil is used or has a high acid content, acid-catalyzed esterification can be used to react fatty acids with alcohol to produce biodiesel. Other methods, such as fixed-bed reactors, supercritical reactors, and ultrasonic reactors, forgo or decrease the use of chemical catalysts.
      4. Product purification: Products of the reaction include not only biodiesel, but also byproducts, soap, glycerol, excess alcohol, and trace amounts of water. All of these byproducts must be removed to meet the standards, but the order of removal is process-dependent. The density of glycerol is greater than that of biodiesel, and this property difference is exploited to separate the bulk of the glycerol co-product. Residual methanol is typically recovered by distillation and reused. Soaps can be removed or converted into acids. Residual water is also removed from the fuel.

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 2 of 5

    Previous   1 2 3 4 5    Next