• Extraction And Characterization Of Vegetable Oil Using Bread Fruit Seed

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 5 of 5

    Previous   1 2 3 4 5
    • Based on studies by Toshiyuki. (1999), the oxidative stability of refined vegetable oils is found to be determined considerably by the fatty acid composition, the tocopherols content and the carbonyl value (Toshiyuki, 1999). When observed at frying temperatures, it is seen that in general, non-refined oils prove to have a better stability than refined oils (Gertz et al., 2000). This could be attributed to the fact that refining steps, in particular deodorization, remove a percentage of the tocopherols, which act as natural anti-oxidants in vegetable oils (Applewhite, 1978). Corn oil has a better stability than soybean oil, while rapeseed oil is seen to give a better performance than olive oil. This can be explained in terms of their compositions (Isbell et al., 1999). When investigated at a temperature of 110oC, vegetable oils still show the trend of increased stability in the unrefined state than when refined. Meadow foam oil is reported as the most stable oil in the study conducted by Isbell et al. (1999). High oleic sunflower oil and crude jojoba oil also had good values of oxidative stability (Isbell et al., 1999). Other studies indicate that the presence of free fatty acids has a pro-oxidant effect on vegetable oils (Frega et al., 1999). Hence refining practices are important, seeing Aluyor and Ori-Jesu 4839 that improper handling and raw material abuse can result in the stimulation of enzymatic activity which could produce free fatty acids (Applewhite, 1978). Further investigations on manufacturing practices also reveal research which indicates the importance of the solvent used in the extraction of vegetable oils. Traditional solvents utilized such as hexane or petroleum ether have the characteristic of extracting only non-polar species. Isopropanol however, as documented by Oyedeji et al. (2006) would extract some polar and high molecular weight compounds. Among these compounds are the natural antioxidants and pigments in oilseeds which presence lead to extended shelf life and hence better oxidative stability (Oyedeji et al., 2006).
      1.8 Antioxidants and stability of vegetable oils
      Numerous experimental works have established the positive effect of anti-oxidants on the oxidative stability of vegetable oils for both edible uses and industrial uses. An important class of anti-oxidants consists of the phenolic compounds butylhydroxyanisole (BHA), butylhydroxytoluene (BHT), propyl gallate, and tert-butyl
      hydroquinone (TBHQ). Their use in vegetable oils meant for domestic and industrial processes is widespread.
      Vegetable oils in their natural form possess constituents that function as natural antioxidants. Amongst them are ascorbic acids, _-tocopherole, _-carotene, chlorogenic
      acids and flavanols (Ullah et al., 2003). Tests conducted to investigate the effectiveness of natural anti-oxidants contained in red pepper oil added to soybean and sunflower oils indicate that they provide variable protection against light induced auto-oxidation.
      In the above mentioned study on the inhibitive effect of natural antioxidants contained in red pepper oil, it was additionally observed that the phenolic anti-oxidant
      butylated hydroxytoluene (BHT) shows more effectiveness generally than natural anti-oxidants (Ullah et al., 2003). In the work done by Robert (2005), the common phenolic anti-oxidants were tested for their effectivenessin improving the oxidative stability of biodiesel obtained from soybean oil. Dunn monitored the oxidative stability by means of pressurized differential scanning calorimetry (P-DSC). For both static and dynamic conditions, improvements in oxidative stability are observed with the application of anti-oxidants, which included BHA, BHT, TBHQ, propyl gallate (PrG) and α-tocopherol. The work of (Dunn, 2005) further showed that the relative effectiveness of the different anti-oxidants differed for static and dynamic conditions, although all showed superior performance when compared with α-tocopherol.
      A recent area of interest in antioxidant research is concerned with finding effective replacements for the conventional synthetic antioxidants from among various natural extracts from plant species which are seen to possess antioxidant properties. Such research is in the main prompted by the reported possibility of synthetic antioxidants having adverse health effects on humans exposed to them. Specifically, they are known to contribute to liver enlargement and an increase in microsomal activity (Khanahmadi et al., 2006; Morteza- Semnani et al., 2006). Maduka et al. (2003) investigated the effectiveness of a Nigerian alcoholic beverage additive, Sacoglottis gabonensis stem bark extract as an antioxidant for common stored vegetable oils. Inhibition of lipid peroxi-dation was found to be comparable to inhibitions obtained with treatment with vitamins C and E (Maduka et al., 2003).
  • CHAPTER ONE -- [Total Page(s) 5]

    Page 5 of 5

    Previous   1 2 3 4 5