• STEPWISE PROCEDURES IN DISCRIMINANT ANALYSIS


  • You can get the complete material / full content @ a service support fee of ₦4,500.00(10-USDT) only

    Download This Material Now !!

    • ABSRACT - [ Total Page(s): 1 ] Abstract Several multivariate measurements require variables selection and ordering. Stepwise procedures ensure a step by step method through which these variables are selected and ordered usually for discrimination and classification purposes. Stepwise procedures in discriminant analysis show that only important variables are selected, while redundant variables (variables that contribute less in the presence of other variables) are discarded. The use of stepwise procedures is employed as to obtain a classification rule with a low error rate. Here in this work, variables ... Continue Reading

         

      APPENDIX A - [ Total Page(s): 1 ] ... Continue Reading

         

      APPENDIX B - [ Total Page(s): 1 ] APPENDIX II BACKWARD ELIMINATION METHOD The procedure for the backward elimination of variables starts with all the x’s included in the model and deletes one at a time using a partial  or F. At the first step, the partial  for each xi isThe variable with the smallest F or the largest  is deleted. At the second step of backward elimination of variables, a partial  or F is calculated for each q-1 remaining variables and again, the variable which is the least important one in the presence of other variables is deleted. This process goes on to a step ... Continue Reading

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTSPageTitle PageApproval pageDedicationAcknowledgementAbstractTable of ContentsCHAPTER 1: INTRODUCTION1.1    Discriminant Analysis1.2    Stepwise Discriminant analysis1.3    Steps Involved in discriminant Analysis1.4    Goals for Discriminant Analysis1.5    Examples of Discriminant analysis problems1.6    Aims and Obj ectives1.7    Definition of Terms1.7.1    Discriminant function1.7.2    The eigenvalue1.7.3    Discriminant Score1.7.4    Cut off1.7.5    The Relative Percentage1.7.6    The Canonical Correlation, R*1.7.7    Mahalanobis dis ... Continue Reading

         

      CHAPTER ONE - [ Total Page(s): 2 ] DEFINITION OF TERMS Discriminant Function This is a latent variable which is created as a linear combination of discriminating variables, such that Y =      L1X1 + L2X2 +          + Lp Xp where the L’s are the discriminant coefficients, the x’s are the discriminating variables. The eigenvalue: This is the ratio of importance of the dimensions which classifies cases of the dependent variables. There is one eigenvalue for each discriminant function. With more than one discriminant function, the first eigenvalue will be the largest and the most ... Continue Reading

         

      CHAPTER TWO - [ Total Page(s): 3 ] 5 is called the mahalanobis (squared) distance for known parameters. For unknown parameters, the Mahalanobis (squared) distance is obtained by estimating p1, p2 and S by X1, X2 and S, respectively. Following the same technique the Mahalanobis (Squared) distance, D , for the unknown parameters is D2 = (X- X)+S-1 (X1- X2) . The distribution of D can be used to test if there are significant differences between the two groups.2.4 WELCH’S CRITERION Welch (1939) suggested that minimizing the total probability of misclassification would be a sensible idea. The disc ... Continue Reading

         

      CHAPTER THREE - [ Total Page(s): 5 ]The addition of variables reduces the power of Wilks’ Λ test statistics except if the added variables contribute to the rejection of Ho by causing a significant decrease in Wilks’ Λ ... Continue Reading

         

      CHAPTER FOUR - [ Total Page(s): 3 ]CHAPTER FOUR DATA ANALYSISMETHOD OF DATA COLLECTIONThe data employed in this work are as collected by G.R. Bryce andR.M. Barker of Brigham Young University as part of a preliminary study of a possible link between football helmet design and neck injuries.Five head measurements were made on each subject, about 30 subjects per group:Group 1    =    High School Football players Group 2    =    Non-football playersThe five variables areWDIM    =    X1    =    head width at widest dimensionCIRCUM    =    X2    =    head circumferenceFBEYE    =    X3    = ... Continue Reading

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVERESULTS, CONCLUSION AND RECOMMENDATIONRESULTSAs can be observed from the results of the analysis, when discriminant analysis was employed, the variable CIRCUM(X2) has the highest Wilks’ lambda of 0.999 followed by FBEYE (X2) (0.959). The variable EYEHD (X4) has the least Wilks’ lambda of 0.517 followed by EARHD (X5) (0.705). Also the least F-value was recorded with the variable CIRCUM (X2) (0.074) followed by the variable FBEYE (X2) (2.474), while the variable EYEHD (X4) has the highest F-value of 54.207 followed by the variable EARHD (X5) (24.325).The standardized ca ... Continue Reading

         

      REFRENCES - [ Total Page(s): 1 ] REFERENCES Anderson, T.W. (1958). An introduction to multivariate statistical Analysis. John Wiley & Sons Inc., New York. Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin 70, 426-443. Cooley W.W. and Lohnes P.R. (1962). Multivariate procedures for the Behavioural Sciences, New York John Wiley and Sons Inc. Efroymson, M.A. (1960). Multiple regression analysis. In A. Raston & H.S. Wilfs (Eds.) Mathematical methods for digital computers. Greenwich, CT: JAI Press. Fisher, R.A. (1936). “The use of multiple ... Continue Reading